A hierarchical axis of object processing stages in the human visual cortex.
نویسندگان
چکیده
How are objects represented in the human visual cortex? Two conflicting theories suggest either a holistic representation, in which objects are represented by a collection of object templates, or a part-based representation, in which objects are represented as collections of features or object parts. We studied this question using a gradual object-scrambling paradigm in which pictures of objects (faces and cars) were broken in a stepwise manner into an increasing number of blocks. Our results reveal a hierarchical axis oriented anterior--posteriorly in the organization of ventral object-areas. Along this axis, representations are arranged in bands of increasing sensitivity to image scrambling. The axis starts in early visual areas through retinotopic areas V4/V8 and continues into the lateral-occipital sulcus dorsally and the posterior fusiform girus ventrally, corresponding together to the previously described object-related lateral occipital complex (LOC). Regions showing the highest sensitivity to scrambling tended to be located at the most anterior-lateral regions of the complex. In these more anterior regions, breaking the images into 16 parts produced a significant reduction in activation. Interestingly, activation was not affected when images were cut in two halves, either horizontally or vertically. Car images generally produced a weaker activation compared to faces in the lateral occipital complex but showed the same tendency of increased scrambling sensitivity along the anterior--posterior axis. These results suggest the existence of a hierarchical axis along ventral occipito-temporal object-areas, in which the neuronal properties shift from sensitivity to local object features to a more global and holistic representation.
منابع مشابه
Hierarchical representation of shapes in visual cortex—from localized features to figural shape segregation
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently gr...
متن کاملHierarchical processing of face viewpoint in human visual cortex.
The ability to recognize objects across different viewpoints (view invariance) is a remarkable property of the primate visual system. According to a prominent theory, view information is represented by view-selective mechanisms at early stages of visual processing and gradually becomes view invariant in high-level visual areas. Single-cell recording studies have also reported an intermediate st...
متن کاملShort-latency category specific neural responses to human faces in macaque inferotemporal cortex
In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...
متن کاملVisual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملHow Deep is the Feature Analysis underlying Rapid Visual Categorization?
Rapid categorization paradigms have a long history in experimental psychology: Characterized by short presentation times and speeded behavioral responses, these tasks highlight the efficiency with which our visual system processes natural object categories. Previous studies have shown that feed-forward hierarchical models of the visual cortex provide a good fit to human visual decisions. At the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 11 4 شماره
صفحات -
تاریخ انتشار 2001